δ-Aminolevulinic acid dehydratase single nucleotide polymorphism 2 and peptide transporter 2*2 haplotype may differentially mediate lead exposure in male children.
نویسندگان
چکیده
Child low-level lead (Pb) exposure is an unresolved public health problem and an unaddressed child health disparity. Particularly in cases of low-level exposure, source removal can be impossible to accomplish, and the only practical strategy for reducing risk may be primary prevention. Genetic biomarkers of increased neurotoxic risk could help to identify small subgroups of children for early intervention. Previous studies have suggested that, by way of a distinct mechanism, δ-aminolevulinic acid dehydratase single nucleotide polymorphism 2 (ALAD(2)) and/or peptide transporter 2*2 haplotype (hPEPT2*2) increase Pb blood burden in children. Studies have not yet examined whether sex mediates the effects of genotype on blood Pb burden. Also, previous studies have not included blood iron (Fe) level in their analyses. Blood and cheek cell samples were obtained from 306 minority children, ages 5.1 to 12.9 years. (208)Pb and (56)Fe levels were determined with inductively coupled plasma-mass spectrometry. General linear model analyses were used to examine differences in Pb blood burden by genotype and sex while controlling for blood Fe level. The sample geometric mean Pb level was 2.75 μg/dl. Pb blood burden was differentially higher in ALAD(2) heterozygous boys and hPEPT2*2 homozygous boys. These results suggest that the effect of ALAD(2) and hPEPT2*2 on Pb blood burden may be sexually dimorphic. ALAD(2) and hPEPT2*2 may be novel biomarkers of health and mental health risks in male children exposed to low levels of Pb.
منابع مشابه
Polymorphisms of delta-aminolevulinic acid dehydratase (ALAD) and peptide transporter 2 (PEPT2) genes in children with low-level lead exposure.
Low-level lead exposure during early childhood has long been associated with altered neurocognitive development and diminished cognitive functions. Over nine thousand U.S. industrial facilities annually emit significant amounts of lead, creating exposure risk particularly for minority children. The mechanisms by which low-level lead exerts neurotoxic effects are poorly understood. Once absorbed...
متن کاملDelta-aminolevulinic acid dehydratase (ALAD) polymorphism in lead exposed Bangladeshi children and its effect on urinary aminolevulinic acid (ALA).
BACKGROUND AND OBJECTIVE Lead has long been recognized as a harmful environmental pollutant. People in developing countries like Bangladesh still have a higher risk of lead exposure. Previous research has suggested that the delta-aminolevulinic acid dehydratase (ALAD) genotype can modify lead toxicity and individual susceptibility. As children are more susceptible to lead-induced toxicity, this...
متن کاملHUMAN GENOME EPIDEMIOLOGY (HuGE) REVIEWS δ-Aminolevulinic Acid Dehydratase Genotype and Lead Toxicity: A HuGE Review
The ALAD gene (chromosome 9q34) codes for δ-aminolevulinic acid dehydratase (ALAD) (E.C. 4.2.1.24). ALAD catalyzes the second step of heme synthesis and is polymorphic. The ALAD G177C polymorphism yields two codominant alleles, ALAD-1 and ALAD-2, and it has been implicated in susceptibility to lead toxicity. Genotype frequencies vary by geography and race.The rarer ALAD-2 allele has been associ...
متن کاملPossible Influence of δ-Aminolevulinic Acid Dehydratase Polymorphism and Susceptibility to Renal Toxicity of Lead: A Study of a Vietnamese Population
We examined six newly identified polymorphisms in the delta-aminolevulinic acid dehydratase (ALAD) single-nucleotide polymorphisms (SNPs) to determine if these SNPs could modify the relationship between blood lead (PbB) and some renal parameters. This is a cross-sectional study of 276 lead-exposed workers in Vietnam. All workers were measured for PbB, urinary retinol-binding protein (URBP), uri...
متن کاملComprehensive Analysis of 5-Aminolevulinic Acid Dehydrogenase (ALAD) Variants and Renal Cell Carcinoma Risk among Individuals Exposed to Lead
BACKGROUND Epidemiologic studies are reporting associations between lead exposure and human cancers. A polymorphism in the 5-aminolevulinic acid dehydratase (ALAD) gene affects lead toxicokinetics and may modify the adverse effects of lead. METHODS The objective of this study was to evaluate single-nucleotide polymorphisms (SNPs) tagging the ALAD region among renal cancer cases and controls t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Archives of environmental contamination and toxicology
دوره 61 3 شماره
صفحات -
تاریخ انتشار 2011